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Abstract 

A new molecular-replacement package is presented. 
It is an improvement on conventional methods, 
based on more powerful algorithms and a new 
conception that enables automation and rapid 
solution. 

Introduction 

We start with a brief overview of molecular 
replacement in order to set the scene for the detailed 
description to follow. The technique has been exten- 
sively described in the literature (Rossmann, 1972; 
Machin, 1985). Three main steps may be distin- 
guished: finding the orientation of the search model; 
locating its position; assessing the quality of the 
solution. The first and second steps are carried out 
by Patterson search techniques: the position of the 
model is varied until its calculated Patterson function 
matches the observed one, corresponding to the 
unknown structure. The orientation is usually 
obtained with the rotation function (RF) and, given 
the orientation, the displacement is determined using 
the translation function (TF). Eventually, the posi- 
tional parameters are optimized by rigid-body 
refinement (RBR). 

The six parameters that define the best rotational 
and translational fit are affected by several errors, 
including: 

the intrinsic correlation between the rotational and 
translational parameters, which, for computational 
convenience, are treated separately: 

poor quality of the data: 
lack of similarity between search and target 

models; 
a small size of search model as compared to the 

unit-cell content. 
As a consequence, one ends up with many peaks 

of the combined RF and TF calculations. When 
many potential solutions have to be assessed, the 
procedure becomes difficult practically and requires 
much user interpretation. 
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The problems that molecular replacement en- 
counters may be classified into three major types: 
those for which the solution is rather straight- 
forward, those that are difficult yet solvable and 
those that are simply unsolvable by the method. A 
solvable problem may be tentatively defined as one 
for which an exhaustive six-dimensional search 
would give the correct solution. 

The A MoRe (automatic molecular replacement) 
package is mainly aimed at the second class of 
problems. The usual situation is one in which the RF 
and/or TF are poorly contrasted and the correct 
solutions are not among the first peaks. The critical 
dependence of the outputs on the parameters that 
define the rotation and translation functions implies 
that, in such situations, the peak height is not a 
reliable criterion to use to select the correct solutions. 

A MoRe is based on a new strategy: a compromise 
between automation, speed and performance. A pro- 
found analysis of the mathematical structures of the 
required functions was needed. Some of them are 
novel ones, in particular the n-body TF. Its success 
in a great number of cases, including very difficult 
problems, results from the combined action of the 
following main characteristics of the package: 

(i) adequate functions are computed by powerful 
and fast algorithms; 

(ii) many potential solutions are explored; 
(iii) the information coming from models already 

positioned is automatically incorporated into the 
procedure: 

(iv) the correlation coefficient is used as the main 
criterion of selection; 

(v) there is a high degree of automation. 
In the following sections, we describe the main 

programs of the AMoRe suite and illustrate its use in 
a nontrivial case. 

Notation 

( M , I t J .  s =  1 . . . . .  o Transformation M.,. and trans- 
lation vector t,. corresponding 
to the sth symmetry operation. 
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H = ( H , K , L )  

FO~i ' 

h=(h ,  k, l) 

./(h) 

R(a,/3, ~,) 

O 

D 

, ' =  Ivl,  e = v/~, 

.j~(v) 

Y,,,,(~) 

Crystal reciprocal-space (row) 
vector. 
Fourier coefficient of the crystal 
electron density. 
Continuous reciprocal-space 
vector. 
Continuous Fourier transform 
of the model electron density. 
3 × 3 rotation matrix param- 
etrized by Euler angles. 
Translation (column) vector in 
the crystal cell, in fractional 
coordinates. 
Matrix to transform fractional 
into orthogonal coordinates in 
the model cell. 
Matrix to transform orthogonal 
into fractional coordinates in 
the crystal cell. 
Radial and angular parts of 
vector v (in direct or recip- 
rocal space). 
Spherical Bessel function of 
order l. 
Spherical harmonics of order / 
and projection m. 

S t r u c t u r e - f a c t o r  c a l c u l a t i o n  

One of the cornerstones of the package is an 
extremely efficient algorithm to calculate the struc- 
ture factors of the rotated and translated model by 
simple interpolation (Lattman & Love, 1970). For 
given rotation R(a, /3, y) and translation x, the 
calculated structure factor is given by 

FH(a,/3, y , x , y , z )  = Z f [ H M ,  DR(a, /3 ,  y)O] 

x exp (2~-iHt,) exp (2~iHM,x)  

(1) 

(Castellano, Oliva & Navaza, 1992). We see that the 
values of the continuous Fourier coefficients are 
needed at the reciprocal vectors HM,DR(a ,  ,8, y)O, 
which are not in general sampling points of./(h); 
therefore, their computation requires interpolation. 
It was found that satisfactory results may be 
obtained by using a simple linear interpolation, pro- 
vided that the model's center of mass is placed at the 
origin of a cell with linear dimensions about four 
times the size of the model. 

The continuous Fourier coefficients are custom- 
arily computed by Fourier transformation of the 
electron density constructed on a Cartesian grid, 
based on the model's atomic coordinates. However, 
(1) applies to an arbitrary electron density as well. 

F a s t  r o t a t i o n  f u n c t i o n  

The other cornerstone of the package is the RO TING 
program, which calculates the fast rotation function 
(Crowther, 1972). It uses expansions in spherical 
harmonics as in Crowther's formulation, but the 
radial variables are handled differently, leading to 
more accurate results. The basic formulas used in 
R O T I N G  were derived in previous articles (Navaza, 
1987, 1990), to which the reader is referred for 
details. 

The rotation function takes the factorized form 
z¢ / 

R(a,/3,~,) Z Z "~ = •, ..... D ...... (a,/3, y), (2) 
/ =  [} / l l . t ~ l "  = - -  I 

where / D ...... are the matrices of the irreducible rep- 
resentations of the rotation group. They are written, 
in Eulerian angles, as 

D~ ..... (a,/3, y) = dl ..... ( / 3 ) e x p [ - i ( m a + m ' y ) ] ;  (3) 

the reduced matrices d ....... (/3) are calculated with the 
very stable recurrence relation (Navaza, 1990): 

[ ( l - r e ' +  l ) ( / + m ' ) ]  t " / -d ....... _ , ( /3 )  

+ [ ( / + m ' + l ) ( l  m,) ] l ,  / - - d  ....... . + , ( / 3 )  

+ 2 [ m - r e '  cos (/3)] sin (/3)- 'd~ ...... .(/3)=0, (4) 

starting from the expression 

d~,,.,(/3)=[(21)!/(l + m) ! ( I -  m)!]' "- 

x sin (/3/2)/-'' ' cos (/3/2)/+''' (5) 

The ./ (_ ...... depend on the intensities of the crystal and 
model and on the definition of the spherical domain 
of integration but not on angular variables. They are 
given in terms of the radial functions 

O,,,(r) = 477"( - i)' ~]FHI~- /,(2~'Hr) Y~,,,(~)* (6) 
H 

by the one-dimensional integral 
h 

, /  _. ( ...... =(3/47r)(h 3 a 3) i f  .~,1 . I , i . ,  2 - ~/, , ,(r)Ch.O) r dr (7) 

[a and h are the inner and outer radii of the spherical 
domain and the labels (t) and (s) refer to the target 
crystal and the search model, respectively]. A closed 
analytical expression can be obtained by substituting 
(6) into (7) and using the well known properties ot" 
Bessel functions. 

In practice, however, the C~ ..... a r e  calculated by 
numerical integration. There are no severe limita- 
tions concerning the ratio of radius to resolution and 
the results are more accurate than those obtained 
with other algorithms (Alzari & Navaza, 1991: 
Strynadka, Adachi, Jensen, Johns, Sielecki, Betzel, 
Sutoh & James, 1992). The program R O T I N G  first 
computes expression (6) for the crystal and the 
model, sampling the radial functions at the points of 
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a Gauss-Legendre quadrature formula. The spheri- 
cal harmonics are computed with (4) and (5), putting 
m=0 .  The spherical Bessel functions are computed 
using the relation 

j,_ .(v) = [(2l+ 1)/v]j,(v)-j ,+,(v).  (8) 

Then, the C ..... a r e  evaluated with the formula 
N 

I ( t)g r ~C(S) ( . .  ~ * .  2 . C ...... = X Clm~ ,,S /,,,t,r,,~ r,~,,  (9) 
n =  l 

where w,, and r,, are the integration weights and 
points, respectively. An optimal Gauss-Legendre 
quadrature formula is determined for each l; it 
depends on the data resolution and the interval of 
integration; changing any of these parameters implies 
changing the sampling of the radial functions. 

Expression (2) is itself an expansion in terms of the 
complete and orthogonal set of functions D ...... . The 
label / here plays a role similar to the frequency in 
Fourier synthesis: the l=  0 term is the average value 
of the RF - this simply adds a constant contribution; 
high-/ terms imply high angular resolution. These 
properties are exploited by ROTING to enhance 
the resolution of the rotation peaks and to cast 
the RF output in the form of a correlation co- 
efficient. 

Translat ion function 

The package uses the translation function defined as 
the overlap of the observed and calculated Patterson 
functions, for a given orientation of the model 
(Crowther & Blow, 1967; Harada, Lifchitz, Berthou 
& Jolles, 1981 ): 

T(x) = Z mHA[F~ ~ [2[Fu( ol,18, T,x,Y,2)l 2 
H 

- -  Z v ~  A l L T o b s  ~ , ~ - '" , , ' - ' l - , ,  ]2Z . / (h , )  . / [h , , ]  

× exp [ - 2~-iH(t, - L,)] 

× exp [ - 2Trill(M, - M,,)x]. (10) 

with A]F~b"[2=IF'~]2--(IF'~b~I2)k. f ( h , ) s t a n d s  for 
f [HM,DR(a , /3 ,y)O]  and mR, the multiplicity of 
reflection H, is introduced to restrict the sum to the 
asymmetric unit (including Friedel's symmetry). The 
vectors { H ( M , -  M,.,)} define a Bravais lattice that 
does not in general coincide with the crystal one; it 
displays the translational symmetry of T(x). The 
corresponding direct cell is precisely the Cheshire cell 
(Hirshfeld, 1968). 

The preceding formulas may be easily modified to 
incorporate the information concerning already 
placed models. We have simply to add to 
FH(a,~,y,x,y,z)  their contribution F'~. This gives the 
extra term (skipping translation-invariant contri- 

butions), 

Z mHAIg°bH'~ 12Z {f(h,)F;'l* exp [2zriH(M.,x + t.,.)] 
H ,~" 

+f[h , ]*F '~exp[ -2z r iH(M,x+t , ) ] } .  (11) 

The TRAING program incorporated in AMoRe  
computes the T function using fast Fourier trans- 
form (FFT) techniques. In the one-body case, the 
search is performed on the Cheshire cell. Otherwise 
(the n-body TF), the search is performed on the 
whole crystal cell. The values of T are only used as a 
means of selecting reasonable peaks. In fact, the 
output is the R factor 

R f =  ~" mn]lF'~" -IFH(a,[3,%x,y,z)lJ 
H 

and the correlation coefficient 

Cc = 5" m,,AIF'~ ~ Izlpf . (a, tL ~,,x,y,z)l 
! !  

× mH[AlFu(a,~,y,x,y,z)l] 2 (13) 

(A]FH[ stands for ] F . ] -  (]FK])K), corresponding to the 
highest peaks of T. 

Fast  rigid-body refinement 

This procedure was first proposed by Huber & 
Schneider (1985); the algorithms used in AMoRe  are 
those of the FITING program described by 
Castellano et al. (1992). A quadratic misfit is mini- 
mized with respect to the positional parameters, the 
overall scale factor a and the overall temperature 
factor B, 

Q(a,B,a,f l ,  y,x,y,z) = Z m .  {]F"b~(H)[ exp ( - BJH] 2) 
H 

- A]FH(~,~,y,x,y,z)]} 2. (14) 

If there are N search models, the calculated Fourier 
coefficient FH is the sum of N contributions like (1). 
If the individual model Fourier transforms f ,  have 
been set to a common scale, they are 

F~, = Z Xf , [HM,  DR(a,,,/3,,,y,,)O] 
n 

x exp (27riHt,) exp (2"rriHM, x,,). (15) 

The minimization procedure (least-squares) 
involves the derivatives of Q, which are calculated 
starting from analytical expressions. At each cycle, 
the optimal A and B are determined and the minimi- 
zation with respect to the positional parameters is 
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alternately performed for each search model while 
the others are kept fixed. 

AN AUTOMATED PACKAGE FOR MOLECULAR REPLACEMENT 

Strategy 
The package allows for multiple inputs to the indivi- 
dual programs. The outputs are lists of potential 
solutions (see the tables described later). Each output 
line 

ILabel o1 1 =L,00xccl,00xRf 
represents a potential position corresponding to a 
particular model; it contains all the information 
required by the package: a label to identify the 
model, three angles and three translations to position 
the model within the crystal unit cell, the correlation 
coefficient [(13)] and R factor [(12)]. In the case of 
n-body outputs, the last two items refer to a whole 
n-body configuration. In the case of RF outputs, Cc 
measures the correlation between Patterson functions 
restricted to the spherical domain of integration: 
translations and R factors are set to zero. The label 
is, in general, the logical number of the file contain- 
ing the model's continuous Fourier coefficients. 

Two preliminary programs must be run in order to 
cast the data into a suitable representation: SORT- 
ING, which sorts, packs and assesses the quality of 
measured data, and TABLING, which calculates the 
continuous Fourier coefficients corresponding to the 
different search models. These coefficients are 
obtained by Fourier transforming the electron den- 
sity based on the atomic coordinates of the molecule, 
which is placed within a cell with linear dimensions 
about four times the size of the model. To avoid 
using a big cell resulting from an unfavorable posi- 
tion of the molecule, the center of mass of the atoms 
is shifted to the origin and the coordinates are 
rotated in order to align their principal axes of 
inertia with the cell axes: the resulting position is 
taken as the initial reference one. 

The ROTING program is then used to calculate 
the cross-RF. The integration radius is usually taken 
as the distance from the center of mass to the 
farthest atom (the inner radius is systematically set to 
zero). The structure factors corresponding to the 
search model are computed by interpolation, taking 
a P1 cell of size equal to the smallest box containing 
the model, plus the integration radius, plus the 
requested resolution (this cell is substantially smaller 
than that used to compute the continuous Fourier 
coefficients). The standard output contains all peaks 
greater than 50% of the maximum value of the RF. 

The TRAING program is then used to compute 
the one-body TF. The input is essentially the whole 
RF output. For each line (16), the model, identified 

by its label, is rotated by the specified angles and 
translated within the Cheshire cell. The standard 
output contains the top ten peaks greater than 50% 
of the maximum value of the TF, sorted in 
descending order of their correlation coefficient. 

If more than one molecule is to be placed within 
the asymmetric unit, a series of n-body TFs are 
executed. At each stage, a potential solution of the 
preceding step (in general that with greatest corre- 
lation coefficient) provides the fixed contribution to 
the n-body TF [(11)]. 

Finally, FITING is used to refine the positional 
parameters of the potential solutions. The lines of its 
output contain a further column with the values of 
the overall B factors [(14)]. Although this program is 
commonly used at the final stage of the whole pro- 
cedure, it may be profitable to run it after each 
n-body TF. 

AMoRe may be executed in a completely automa- 
tic way; although decisions are worth taking by the 
user in order to avoid unnecessary computations. In 
fact, three levels of automation may be distinguished. 
At the lowest level, the inputs to the individual 
programs are prepared by the crystallographer. 
Automation is here reduced to the possibility of 
multiple inputs to the n-body TF and RBR pro- 
grams. The code distributed by the CCP4 Working 
Group (SERC Daresbury Laboratory, 1979) essen- 
tially works at this level; most parameters defining 
the individual functions are controlled by the user. 

At the second level of automation, an intermediate 
code, OIC, prepares first-level inputs in terms of the 
available outputs. The code performs a number of 
operations, including a rudimentary packing analy- 
sis, in order to retain only the most promising solu- 
tions. At this level, the user controls the criteria of 
selection and some options of the individual pro- 
grams. 

A third level of automation was also developed: all 
the inputs to OIC are generated by the JOB code. 
This code produces, besides the second-level inputs, 
a user-friendly tentative command file (only for Unix 
and VMS operating systems) for the whole pro- 
cedure, following the strategy presented in this sec- 
tion. The feasibility of such highly automated 
calculations is illustrated in the following section. 

Example 
We present here a succinct description of the auto- 
mated procedure used to solve the crystal structure 
of barstar (Guillet, Lapthorn, Fourniat, Benoit, 
Hartley & Mauguen, 1993). Barstar crystallizes in 
space group P6 ( a=  h=143.6 ,  c =35 .24A,  y =  
120 ), with four similar molecules in the asymmetric 
unit. Data were used between 10 and 4 A resolu- 
tion. 
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Table 1. RF output 

The two numbers in the line after the header indicate, respectively, 
that this is a one-body  output  and that there are 31 potential 
orientations. 

ROTING: * * B A R S T A R  H E X A G O N A L * *  

I 31 
# 32.64 61.90 208.33 0.00000 0.00000 0.00000 17.4 0.0 

-0 .52  66.05 147.87 0.00000 0.00000 0.00000 15.7 0.0 
# 5.12 63.76 208.59 0.00000 0.00000 0.00000 15.1 0.0 

1.85 124.28 164.77 0.00000 0.00000 0.00000 14.4 0.0 
8.09 114.23 330.97 0.00000 0.00000 0.00000 13.9 0.0 

# 36.16 115.37 27.61 0.00000 0.00000 0.00000 13.5 0.0 
4* 55.41 109.06 33.53 0.00000 0.00000 0.00000 13.5 0.0 

59.13 118.18 23.66 0.00000 0.00000 0.00000 12.8 0.0 
29.73 113.81 328.75 0.00000 0.00000 0.00000 12.5 0.0 
50.32 141.66 268.46 0.00000 0.00000 0.00000 12.3 0.0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Almost all the information required by JOB is 
contained in the preceding paragraph: cell param- 
eters, space-group symmetry, resolution range, 
number of different models, number of times each 
model is expected to appear within the asymmetric 
unit. JOB further requests the number of orienta- 
tions to be tested (ten in this example) and a distance 
cut-off (10,~ in this case) to eliminate unphysical 
solutions. 

The true orientations were among the top ten 
peaks of the RF (Table 1); one of them was more 
than 15: off its final value (i.e. the final rotation may 
be obtained from the original one by turning 15 " 
about a certain axis). The positions, within the two- 
dimensional Cheshire cell, of the three more accurate 
orientations were determined by the one-body TF 
(Table 2). The contrast of the correlation coefficient 
was significant, although some solutions were not at 
the top of the overlap function. The correctness of 
these solutions was confirmed and their relative posi- 
tions within the crystallographic cell determined by 
the subsequent n-body TF (n -- 2, 3). The true trans- 
lation of the misoriented monomer appeared only in 
a poorly contrasted four-body-TF output (Table 3). 
Eventually, the RBR program revealed the correct 
solution (Table 4). A final program, MR21C, pro- 
duced the rotation matrices and translations to apply 
to the original input atomic model. The execution of 
the whole procedure took about 36 min of CPU 
time, on a MicroVAX3100/80 (about 9 min on the 
IBM3090 of CIRCE). First-level automation would 
have required less CPU time but would have 
required manual interventions at intermediate steps. 

The solution of the barstar structure makes clear 
some of the advantages of A MoRe and illustrates its 
new philosophy: instead of changing the parameters 
that define the different functions or improving the 
search model in order to promote the correct peaks 
to the top of the RF/TF outputs, we explore many 
potential solutions with adequate functions and 
incorporate pertinent information as it is acquired. 

Table 2. One-body-TF output 

Each group of  potential  solutions is preceded by an indication of  
the type of  output  (one-body  in this case) and the number of  
solutions in the group, respectively. For the correct orientations,  
two peaks are displayed in order to show the contrast in corre- 
lation coefficient. For the misoriented monomer,  none of  the 
proposed solutions correspond to the true position.  

TRAING: * * B A R S T A R  H E X A G O N A L * *  
I I0 

# I1 32.64 61.90 208.33 0.46385 0.70478 0.00000 19.3 52.5 
I1 32.64 61.90 208.33 0.92108 0.97570 0.00000 16.8 53.3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 10 
II 59.48 66.05 147.87 0.02526 0.99573 0.00000 12.7 54.5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 I0 
11 5.12 63.76 208.59 0.01380 0.34271 0.00000 22.7 51.5 
11 5.12 63.76 208.59 0.06824 0.03270 0.00000 17.4 53.7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 10 
11 1.85 124.28 164.77 0.11464 0.09517 0.00000 14.4 55.1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 10 
II 8.09 114.23 330.97 0.68550 0.25260 0.00000 14.6 54.2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 
# 36.16 

36.16 
36.16 
36.16 
36.16 
36.16 
36.16 
36.16 
36.16 
36.16 

1 
# 11 55.41 

II 55.41 

I0 
115.37 27.61 0.89118 0.10618 0.00000 17.0 53.2 

15.37 27.61 0.64838 0.36248 0.00000 15.7 53.1 
15.37 27.61 0.96577 0.97482 0.00000 15.5 54.7 
5.37 27.61 0.12592 0.20634 0.00000 15.5 54.1 
5.37 27.61 0.97993 0.03868 0.00000 15.4 54.1 
5.37 27.61 0.95748 0.50029 0.00000 14.8 54.2 
5.37 2 7 . 6 1  0.73938 0.35214 0.00000 14.8 54.0 
5.37 27.61 0.92334 0.95002 0.00000 13.6 55.4 
5.37 27.61 0.10519 0.07609 0.00000 13.3 54.5 
5.37 27.61 0.02499 0.99745 0.00000 12.2 57.6 

10 
109.06 33.53 0.88621 0.41959 0.00000 21.3 51.8 
109.06 33.53 0.00830 0.95063 0.00000 17.0 53.1 

I 10 
I1 59.13 118.18 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 10 
11 29.73 113.81 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 10 
II 50.32 141.66 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

23.66 0.65398 0.33444 0.00000 15.4 54.1 

328.75 0.55199 0.96929 0.00000 13.1 54.1 

268.46 0.93459 0.99270 0.00000 15.0 53.6 

The model is changed only in the absence of a 
detached solution. In our experience, the notion of 
'significance level of RF and TF peaks' is not a 
useful one for moderately complicated problems. 

Completely automated calculations are recom- 
mended only for small-size problems. In the general 
case, a safe approach is to split the command file 
produced by JOB into its individual steps and exe- 
cute them one after the other, modifying the second- 
level inputs (selection criteria, number of solutions to 
test) according to the intermediate results. 

Miscellaneous results 

A M o R e  has solved a number of difficult structures. 
The first nontrivial case was the antibody-antigen 
complex F9.13.7-GEL (Lescar, Riottot, Souchon, 
Chitarra, Bentley, Navaza, Alzari & Poljak, 1993), 



162 AN A U T O M A T E D  P A C K A G E  FOR M O L E C U L A R  REPLACEMENT 

Table 3. Four-body-TF output 

The top positions in each group correspond to the fixed molecules. 
The Cc and Rf values take into account their contributions. 

TRAING: **BARSTAR HEXAGONAL**  
4 10 

# I1 5.12 63.76 208.59 0.01380 (I.34271 0.00000 
# I I 55.41 109.06 33.53 0.88588 (I.41925 0.67790 
# I 1 32.64 61.90 208.33 0.46875 0.70060 0.90209 
4f 11 36.16 115.37 27.61 0.73311 0.90005 0.78587 41.3 46.2 

11 36.16 115.37 27.61 0.66756 0.67290 0.89507 38.9 47.6 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 10 
I 1 5.12 63.76 208.59 0.01380 0.34271 0.00000 
11 55.41 109.06 33.53 0.88588 0.41925 0.67790 
11 32.64 61.90 208.33 0.46875 0.70060 0.90209 
II 59.13 118.18 23.66 0.62428 0.31454 0.05270 39.6 47.1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 10 
I1 5.12 63.76 208.59 0.01380 0.34271 0.00000 
11 55.41 109.06 33.53 0.88588 0.41925 0.67790 
I1 32.64 61.90 208.33 0.46875 0.70060 0.90209 
11 50.32 141.66 268.46 0.49528 0.34422 0.69027 39.5 46.7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 10 
11 5.12 63.76 208.59 0.01380 (I.34271 0.00000 
I 1 55.41 109.06 33.53 0.88588 0.41925 0.67790 
I1 32.64 61.90 208.33 0.46875 0.70060 0.90209 
11 8.09 114.23 330.97 0.39918 0.32265 0.12672 39.5 46.8 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 10 
I I 5.12 63.76 208.59 0.0138(I 0.34271 0.00000 
I I 55.41 109.06 33.53 0.88588 0.41925 0.67790 
I 1 32.64 61.90 208.33 0.46875 0.70060 0.90209 
11 1.85 124.28 164.77 0.38716 (I.91789 0.80365 39.4 46.6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 10 
I I 5.12 63.76 208.59 0.01380 0.34271 0.00000 
11 55.41 109.06 33.53 0.88588 0.41925 0.67790 
11 32.64 61.90 208.33 0.46875 (I.70060 0.90209 
I1 29.73 113.81 328.75 0.31496 0.75751 (I.79134 38.8 47.1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 10 
11 5.12 63.76 2(18.59 0.01380 0.34271 0.00000 
II 55.41 109.06 33.53 0.88588 0.41925 0.67790 
I1 32.64 61.90 208.33 0.46875 0.70060 0.90209 
I1 59.48 66.05 147.87 0.61(146 (I.35358 (I.85019 38.9 47.2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Table 4. RBR output 

The last column is the supplementary overall B factor (not refined 
in this case). 

FITING: **BARSTAR HEXAGONAL**  
4 I 

# I1 2.86 64.51 208.40 
# I1 57.69 107.71 34.89 
# 11 28.23 62.18 208.23 
# 11 31.11 104.00 32.24 

4 I 
II 2.27 64.32 209.22 
I1 58.12 107.58 35.58 
II 28.17 62.37 208.57 
II 48.57 142.36 265.93 

4 I 
I 1 2.43 64. (17 208.59 
I1 58.26 1(17.7(I 35.87 
I1 28.42 62.71 208.96 
11 1.05 125.93 162.44 

4 I 
11 1.76 64.29 208.36 
II 58.75 108.21 35.29 
II 28.77 62.77 2(18.82 
11 59.12 66.68 149.44 

0.01529 0.34310 0.00463 67.9 34.3 0. 
0.88582 0.41786 0.66325 67.9 34.3 (I. 
0.46716 0.70382 0.91609 67.9 34.3 0. 
(I.73025 0.89819 0.76588 67.9 34.3 0. 

0.01542 0.34452 0.00511 46.8 43.4 0. 
0.88635 0.41779 0.67724 46.8 43.4 0. 
0.467(X) 0.70261 0.91900 46.8 43.4 0. 
0.49666 0.34349 0.68978 46.8 43.4 0. 

0.(11470 0.34401 11.00369 48.6 43.0 0. 
(I.88573 (I.41741 0.66942 48.6 43.0 0. 
0.46765 0.70396 0.91571 48.6 43.0 0. 
0.386(19 0.91945 0.79012 48.6 43.(I 0. 

0.01551 0.34404 0.00147 47.7 44.1 0. 
0.88578 0.41700 0.66075 47.? 44.1 0. 
0.46752 (I.7(1271 (I.91269 47.7 44.1 0. 
(I.61(192 0.35477 (I.83413 47.7 44.1 I). 

which crystallizes in the space group P2~ with two 
complex molecules in the asymmetric unit (a.u.). The 
constant and the variable dimers of FabD1.3 (19% 
of the a.u. content) and triclinic hen lysozyme (13% 
of the a.u. content) were used as separate search 
models. Another example is the structure of the 
antibody-antigen complex D44-HEL,  which crystal- 
lizes in the space group P2~2~2~ (a = 99.7, b = 167.3, 
c = 84.7 A) with two complex molecules in the asym- 
metric unit. The search models were different Fab 
molecules solved in the Pasteur Institute and triclinic 
hen lysozyme. The correct orientations of lysozyme 
were the 24th and 76th peaks of the RF. This was 
revealed by the n-body TF when both Fab molecules 
were already correctly placed. 

Two nontrivial cases which constitute a nice illu- 
stration of the role of molecular replacement in 
crystal structure determination are the barnase- 
barstar complex (Guillet, Lapthorn, Hartley & 
Mauguen, 1994) and barstar (Guillet et al., 1993). 
Only the barnase molecule (Mauguen, Hartley, 
Dodson, Dodson, Bricogne, Chothia & Jack, 1982) 
was known. Barnase-barstar crystallizes in space 
group C2 ( a = 2 0 5 . 4 ,  b = 4 4 . 4 ,  c = 8 8 . 3 A ,  /3 = 
110.5 ), with three complex molecules in the asym- 
metric unit. The structure was solved by molecular 
replacement using the barnase model (20% of the 
a.u. content) and density averaging, exploiting the 
noncrystallographic symmetry. This provided the 
model to solve the barstar structure, as explained in 
the preceding section. 

Some other examples include structures where 
standard software failed but which eventually were 
easy cases for AMoRe: 

(1) A mutant of the tumor necrosis factor (TNF) 
(Saludjian, Prang6, Kahn, Fourme, Tavernier, Van 
Ostade, Fiers & Navaza, 1994), which crystallizes in 
space group P4~2~2 (a = h = 166.2, c = 93.8 A, y = 
120),  with two trimers of TNF in the asymmetric 
unit. Here the search model was a complete trimer. 

(2) A catalytic antibody (M. Bizebard, T. 
Knossow, P. Saludjian & J. Navaza, 1992, 
unpublished), which crystallizes in space group PI 
(a = 99.4, b = 68.1, c = 83.7 A, a = 71.9, /3 = 112.1, 
y =  119.6 ), with four Fab molecules in the a.u.: 
the search models were the constant and variable 
parts of a Fab molecule. 

(3) A proteinase, eglin C (Betzel, Dauter, Genov, 
Lamzin, Navaza, Schnebli, Visanji & Wilson, 1993), 
which crystallizes in space group P43 (a = h = 42.0, 
c = 35.9 A) with one molecule in the a.u. 

(4) Fasciculine II (Le Du, 1992), which crystallizes 
in space group P4~2~2 (a = h = 49.0, c = 82.0 A), 
with one molecule in the a.u.; the search model was 
fasciculine I. 

(5) A mutant of phosphoglycerate kinase, crystal- 
lizing in space group P2~2~2~ with one molecule in 
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the a.u.; 36% of the data were almost uniformly 
missing in the 15 to 3.5 A resolution range. Although 
poorly contrasted, the correct orientation was at the 
top of the RF. 

(6) Many other structures solved after the distribu- 
tion of the package and during two workshops on 
molecular replacement held at CIRCE, Orsay, in 
April and September 1992. 

Future developments 

The rotation function is perhaps the crucial step of 
the whole procedure. Some improvements are under- 
going testing and development, in particular con- 
cerning the peak-search subroutine. Sometimes a 
correct orientation is not in the RF output because it 
is placed within the profile of a massive peak. Situa- 
tions like this are rather common in multifragment 
search problems where the difficulty cannot be 
ascribed to the search model. The RF should include 
some measure of the quality of the peak, for example 
its extension, to allow sampling within the peak 
profile. This means using the distance in the rotation- 
parameter space, which poses some problems 
because the rotation group is not simply connected 
(Navaza, 1987). 

Concerning the translation function, a program 
has been developed that computes the correlation 
coefficient of intensities by fast-Fourier-transform 
techniques (M. Sarrazin, 1992, unpublished). The 
computations are more time consuming because 
three FFTs, at four times the data resolution, are 
needed. 

Some options of A MoRe, although available, have 
not been extensively tested, in particular the locked 
RF and the phased TF. 

It is a pleasure to thank Dr Bedros Saludjian, who 
played an important role in the genesis of this pack- 
age, by convincing the author of its utility and giving 
his invaluable advice during its development. The 
author is also endebted to P. Alzari and C. de Rango 
for illuminating discussions and useful suggestions 
and to Eleanor and Richard Dodson for adapting 

(replacing) some subroutines in the CCP4 suite of 
programs and documenting them, thus helping the 
distribution of the package. 
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